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 Dysphonia, a voice disorder caused by vocal cord 
dysfunction, significantly affects individuals' 
communication abilities. Early and accurate detection of 
dysphonia is crucial for timely intervention and effective 
treatment. Leveraging advancements in deep learning, 
this study employs RNN - Recurrent Neural Networks to 
enhance detection accuracy. However, most studies in 
this domain rely on common datasets, leading to limited 
generalizability of models to diverse populations. In this 
study, we explore the use of various RNN variants, 
including traditional RNN - Recurrent Neural Network, 
LSTM - Long Short-Term Memory and GRU - Gated 
Recurrent Neural Network, to detect dysphonia in an 
uncommon voice dataset. Existing works focus primarily 
on conventional datasets and simpler classifiers, leaving 
room for improvement in accuracy and robustness. Our 
methodology leverages feature extraction techniques to 
preprocess the dataset, followed by training RNN variants 
to evaluate their performance in classifying dysphonic 
and non-dysphonic voices. Each RNN variant was trained 
and evaluated on the preprocessed dataset, divided into 
an 80:20 ratio for training and testing. The results 
revealed differences in model performance, with the 
standard RNN achieving an accuracy of 76%, while the 
LSTM and GRU models outperformed it, achieving 
accuracy of 94% and 93%, respectively. The experimental 
results demonstrate the effectiveness of advanced RNN 
models in handling diverse and challenging datasets, 
offering insights into their comparative performance for 
dysphonia detection and advancing research in voice 
disorder diagnosis. 
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Introduction                                                                                                           
Human voices play a crucial role in daily 

communication, allowing us to convey ideas, 
build connections, and express emotions. 
However, Dysphonia is a condition commonly 
referred to as hoarseness. It can significantly 
impair this essential function. Dysphonia 
includes a range of voice disorders marked by 
abnormal vocal qualities, such as hoarseness, 
breathiness, weakness, or complete loss of 
voice. Symptoms may develop suddenly or 
gradually and can include voice breaks, pitch 
instability, or even pain during speech. A 
distinct form of Dysphonia, Spasmodic 
Dysphonia (SD), is a neurological disorder that 
specifically affects the larynx muscles, causing 
involuntary spasms. These spasms lead to voice 
disruptions, producing a strained, strangled, or 
breathy quality. Understanding the unique 
causes and characteristics of SD is essential for 
devising effective treatments and improving 
the quality of life for affected individuals. 
Dysphonia, if not treated early, may cause 
further complications, leading to significantly 
hindering an individual’s ability to 
communicate effectively, impacting their 
quality of life. Fortunately, researchers are 
actively working to improve speech recognition 
technology for individuals with voice disorders 
(Shamsi et al., 2019). Several research have 
been published to highlight the common issues 
in this field like the scarcity of datasets. A key 
tool in this effort is the application of advanced 
machine learning methods, especially deep 
learning models, to analyze vocal patterns and 
detect subtle abnormalities linked to 
Dysphonia in the "UncommonVoice" dataset. 
The “UncommonVoice” dataset contains a total 
of three thousand, six hundred and ninety-
three (3693) instances of voice recordings. This 
provides a great source for developing and 
testing machine-learning models for various 
speech-related tasks (Moore et al., 2020). The 
dataset consisted of crowd-sourced speech 
recordings from 57 individuals with voice 
disorders, primarily focusing on Spasmodic 

Dysphonia (SD). This dataset is Developed in 
collaboration with Arizona State University’s 
Center for Cognitive Ubiquitous Computing, to 
fill a gap by providing huge speech data 
specifically covering dysphonia. Participants 
were recruited with the support of the National 
Spasmodic Dysphonia Association. They 
contributed through web-based recordings, 
covering tasks ranging from sustained vowels 
to intelligibility assessments and image 
descriptions. Despite its potential, the dataset 
named "UncommonVoice" is not yet fully 
utilized for ongoing research on dysphonia 
detection, presenting an opportunity for 
exploring its full capabilities and contributing to 
the field’s understanding of voice disorders. 
According to (Shamsi & Sindhu, 2024) basic 
RNNs, LSTMs, and GRUs are state-of-the-art 
types of deep neural networks designed to 
capture temporal dependencies in sequential 
data. This capability makes them highly 
appropriate for speech-processing tasks, where 
the sequence and timing of information are 
essential. However, traditional RNNs often 
struggle with capturing long-term relationships 
due to the peculiar concern of vanishing 
gradient. LSTMs overcome this challenge by 
incorporating memory cells and gating 
mechanisms that preserve information over 
longer sequences, while GRUs offer a simplified 
version of the LSTM with fewer parameters but 
comparable performance. Notably, to the best 
of our knowledge, no comprehensive 
comparative study of these RNN variants has 
been conducted specifically for speech sound 
disorders, underscoring the importance of the 
current research. This study aims to fill this gap 
by conducting a comparative analysis of 
standard RNNs, LSTMs, and GRUs for the task 
of dysphonia classification using the dataset 
named "UncommonVoice". By systematically 
evaluating the performance of these variants, 
we seek to identify the most effective model 
for this specific application and provide insights 
into the relative strengths and limitations of 
each variant. Notably this research fills a gap in 
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the comparative analyses of RNN variants for 
speech sound disorders, underscoring the 
novelty and importance of our work. Our 
results contribute to the growing body of 
research on speech disorder identification, 
offering potential improvements in voice-
based diagnostic tools and assistive 
technologies. 
Literature Review 
Recurrent Neural Network 
RNNs are a type of neural network designed to 

handle sequential data, where the order of 
information matters. They achieve this by 
incorporating a hidden state that carries 
information across processing steps. The basic 
RNN update equation for the hidden state is: 

qt = f (Uq ∗ qt−1 + ui ∗ vt + bq)                        (1) 

Where: 
f: Activation Function (e.g., tanh, sigmoid) 
Uq: Weight matrix for the hidden state 
Ui: Weight matrix for the input 
bq: Bias vector 
qt: hidden state at time step 

This equation demonstrates how the hidden 
state qt at time step t is influenced by the 
previous hidden state qt-1, the current input ui, 
and a bias term bq. By applying an activation 
function, the network introduces non-
linearities, enabling it to capture intricate 
patterns in the data. However, RNNs encounter 
challenges in preserving information over long 
sequences due to the issue of vanishing 
gradients, where gradients diminish as they 
propagate backwards through the network, 
potentially causing earlier time steps to have 
less impact. In a comparative study on voice 
pathology detection (Syed et al., 2021), CNN 
and RNN models were evaluated using the SVD 
dataset, demonstrating CNN’s slightly higher 
accuracy of 87.11% compared to RNN’s 
86.52%. The study employed a complex 
architecture featuring 27 layers, combining 
convolutional and recurrent neural networks 
for feature extraction and analysis highlighting 
the need for further exploration of comparative 
analyses with other neural network variants. 

Another study (Ksibi et al., 2023) presents a 
deep learning approach for accurate detection 
of speech pathology, concentrating on single-
vowel analysis (e.g., /a/) and omitting analysis 
of phrases and other vowels. The research 
introduces a novel CNN-RNN architecture 
tailored for voice pathology detection, 
achieving notable performance with an 
accuracy of 88.84% and an F1 score of 87.39%. 
However, different variants like GRU and LSTM 
were still left unexplored. 
LSTM 

LSTM, one of the variants of RNN, tackles the 
vanishing gradient problem by employing a 
sophisticated cell structure featuring gates 
(Graves et al.,2014). These gates regulate the 
flow of information inside the cell, enabling it 
to retain important information over extended 
sequences. LSTMs have similar components to 
RNNs, but their hidden state is replaced by a 
cell state and a hidden state is derived from the 
cell state. Additionally, LSTMs introduce three 
gates: 
Forget Gate: Determines which information 
from the previous cell state to discard. 
Input Gate: Chooses which data from the 
current input should be retained in the cell 
state. 
Output Gate: Decides which data from the 
current cell state should be included in the 
hidden state output. 
The LSTM update equations involve several 
calculations for each gate and the cell state: 

ft = σ(wf ∗ qt-1 + vf ∗ it + bf  )                    (2)                              
it = σ(wi ∗ qt-1  + vi ∗ it + bi                         (3)                                 
~ ct = tanh(wc ∗ qt-1  + vc ∗ it + bc         (4)                            
ct = ft + ct−1 + it∗ ∼ ct                             ( 5)                                           
ot = σ(wo ∗ qt-1  + vo ∗ it + bo                 (6)                                     
ht = ot + tanh(ct)                                     (7)          

These equations show how the gates regulate 
information flow. The forget gate ft in eq (1) 
determines which information to remove from 
the cell state, the input gate in eq(3) chooses 
new information to store, and the output gate 
dictates what the network retains at the current 
time step. Various studies have used this LSTM 
with different feature sets and for various 
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pathologies. One study presents a deep learning 
approach using an LSTM autoencoder with 
multi-task learning to detect pathological voice 
disorders from continuous speech signals 
(Sztahó et al., 2021). It achieves high accuracies 
of 85% for Parkinson’s disease, 86% for 
dysphonia, and 90% for depression across 
evaluation datasets. Another study compares 
SVM, BiLSTM, and CNN algorithms for detecting 
spasmodic dysphonia using MFCCs from the 
Saarbrucken Voice Database. BiLSTM and CNN 
achieved accuracies of 96.20%, outperforming 
SVM (96.15%), showing promise for automated 
detection of this voice disorder (Merzougui et 
al., 2024). Research has also been done to 
classify various dysphonia categories. This study 
(da Silva et al., 2024) categorizes vocal 
pathologies into functional, organic, and 
organofunctional types using the Saarbruecken 
Voice Database. It utilizes spectrogram-based 
classification with a Convolutional Neural 
Network (CNN). Results indicate that the CNN 
achieved 75.4% accuracy for organic dysphonia, 
67.5% for functional dysphonia, and 52.9% for 
multi-label classification. As summarized by the 
author in her study (Sindhu et al., 2024) of 
systematic literature review, most of the 
researchers have used CNN for the classification 
of voice pathology.  
Gated Recurrent Unit  
According to the literature (Shih et al., 2022) 
GRUs reduce the complexities of LSTM 
architecture by incorporating single gates, 
removing a couple of gates i.e. Input Gate and 
the Forget Gate. The effective computation 
exploited by GRU architecture for determining 
the values of the gates is mathematically 
demonstrated in the following equations: 
       mt = σ(wz ∗ qt−1 + vm ∗ it )+ bm            (8)                                       
       rt = σ(wr ∗ qt−1 + vr ∗ it) + br                 (9)                                 
      qt′ = tanh(wh ∗ ([rt ∗ qt−1 + it) + bq      (10)                             
      qt = (1 − mt) ∗ qt−1 + mt ∗ qt′               (11)                          

Where mt in eq(8) is the update gate that 
determines how much of the previous hidden 
state qt−1 to retain and how much to update with 
new information from the current input 
whereas wz is the weight matrix for the previous 

hidden state, vm is the weight matrix for input, it 

is the reset gate and qt′is the candidate hidden 
state.  The candidate hidden state qt′ is a 
combination of the reset gated hidden state rt ∗ 
qt−1 and the transformed input. Eq (11) shows 
the final hidden state qt, which is a weighted sum 
of the previous hidden state (qt−1) and the 
candidate hidden state qt′ controlled by the 
update gate mt. These modifications enable 
GRUs to capture dependencies over longer 
sequences with fewer parameters, making them 
computationally efficient. Shewalkar et al. 
introduce a combined CNN-GRU model 
integrating convolutional neural networks and 
gated recurrent units for dysarthria detection 
(Shewalkar et al., 2019). Experimental findings 
indicate that the proposed CNN-GRU model 
achieves a leading accuracy of 98.38%, 
surpassing other models in the field. Apart from 
this GRU has been widely used in the task of 
speech recognition. The study (Shewalkar et al., 
2018) & (Shewalkar et al., 2019) focuses on 
single-vowel analysis but does not evaluate the 
efficacy of GRUs or LSTMs, leaving a research 
gap. Findings indicate that LSTM achieves the 
lowest word error rates, although GRU 
optimization exhibits faster convergence while 
maintaining competitive word error rates like 
LSTM. Another study compares GRU and LSTM 
models for large vocabulary continuous speech 
recognition using TED talks (Khandelwal et al., 
2016). The author concludes that GRU, simpler 
than LSTM, consistently outperforms LSTM 
across all network depths in speech recognition 
tasks. Apart from these deep learning models, 
spasmodic dysphonia is also classified using 
machine learning algorithms. The authors used 
three widely employed classifiers: k-nearest 
neighbours (KNN), Support Vector Machine 
(SVM), and Decision Tree (DT) on Saarbruecken 
Voice Database (SVD) (Hadjaidji et al., 2021). 
The Decision Tree algorithm achieved the 
highest classification accuracy, approximately 
86.66%. Another study (Rivera et al., 2023) 
compared six machine learning algorithms for 
the automatic identification of dysphonia, with 
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KNN showing the best accuracy among all of 
them (87% - 92%). 

Another class of models, RNNs, is particularly 
suited for sequential data like voice recordings 
in the realm of voice pathology detection, 
particularly in dysphonia, deep learning models 
such as RNN, LSTM, and GRU have not been 
extensively studied despite their successful 
application in various domains such as speech 
recognition and natural language processing.  
This study aims to fill this gap by thoroughly 
investigating the performance of these core 
RNN variants. By focusing on their basic 
structures and avoiding unnecessary 
complexity, we aim to uncover their potential 
for accurately classifying dysphonia. This 
research fills a crucial gap by systematically 
evaluating these RNN variants, providing 
insights into their efficacy in a domain where 
they have been underutilized. This exploration 
not only contributes to the field of voice 
disorder diagnostics but also lays the 
groundwork for future enhancements in voice 
pathology detection and treatment strategies. 

Methodology 
The study utilized the dataset named 

"UncommonVoice", which contains crowd-
sourced voice recordings from 57 speakers with 
various speech disorders, primarily focusing on 
Spasmodic Dysphonia (SD). The 
"UncommonVoice" dataset underwent 
preprocessing steps to prepare it for model 
training. The preprocessing steps include: 1) 
Feature Extraction and 2) Standardization. 
Three recurrent neural network (RNN) 
variants—Standard RNN, Long Short-Term 
Memory (LSTM), and Gated Recurrent Unit 
(GRU)—were selected for comparative analysis.  
1. Standard RNN 
Configured with a single RNN layer containing 
128 units, and 64 units at a hidden layer 
optimized for simplicity in capturing sequential 
dependencies. 
2. LSTM 
The LSTM model incorporated 128 units, and 64 
units at hidden layers leveraging its gating 

mechanisms to preserve long-term 
dependencies. 

3. GRU 
“The GRU model was designed with 128 units, 
and 64 units at hidden layers combining 
simplicity and efficiency for temporal modelling. 
  GRU Utilized a GRU layer known for its 
simplified architecture compared to LSTM, yet 
capable of capturing temporal dependencies 
effectively. Models were trained on an 80:20 
split of the dataset, optimizing with categorical 
cross-entropy and Adam optimizer. Evaluation 
metrics included accuracy, precision, recall, and 
F1 score to gauge classification performance. 
The study maintained consistency in 
experimental settings across all RNN variants. 
Hyperparameters such as batch size, number of 
epochs, and model complexity were kept 
uniform to facilitate fair comparisons of their 
performance metrics. Figure 1 demonstrates the 
complete flow of methodology. Each step of the 
diagram is further explained in the sub-sections 
below. 

 
1. Dataset Description 
In this study, we have used the 
“UncommonVoice” dataset which is publicly 
available for research purposes. This data set 
contains speech recordings from 57 people, 
majorly those having Spasmodic Dysphonia (SD). 
Surveys were initially conducted with the 
participants, during which they were asked 
about the details of their voice condition and 
were asked to rate their voice quality.  
Dataset Structure 
i. Participant Information 

a) Demographics: Includes age, gender, and 
other relevant details. 

 
t 
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b) Voice Condition: Self-reported information 
about the presence and specifics of any voice 
disorders. 
ii. Speech Recordings 
a) Non-Words: 
■ Sustained vowels (e.g., /a/, /i/, /u/). 
■ Diadochokinetic (DDK) rate tasks to assess 
speech motor control. 
b) Read Speech: 
■ Sentences randomly selected from the TIMIT 
corpus. 
■ Sentences required for the CAPE-V 
intelligibility assessment. 
c) Spontaneous Speech: 
■ Descriptions of images sourced from the 
MSCOCO dataset. 
iii. Recording Details: 

a) Participants recorded their speech using a 
web-based application, utilizing their 
recording equipment. 

iv. Data Format 
a) Audio Files: Stored in standard formats (e.g., 

WAV) with appropriate sampling rates to 
ensure quality and compatibility.  

2. Dataset Preprocessing 
Mel-Frequency Cepstral Coefficients (MFCCs) 
are widely used features in speech and audio 
processing (Abdul et al., 2022), particularly in 
tasks like speech recognition, speaker 
identification, and music classification. They 
represent the short-term power spectrum of 
sound in a way that mimics human auditory 
perception. MFCCs are computed by applying a 
series of transformations, including Fourier 
transform, Mel filter bank, logarithmic 
compression, and discrete cosine transform 
(DCT), to capture the essential characteristics of 
audio signals. These features effectively model 
the frequency content of sound, making them 
robust and efficient for various sound 
classification applications. To achieve quality 
and to make the data compatible with the deep 
learning models, we performed several 
preprocessing steps including feature 
extraction, dataset balancing, label encoding 
and dataset splitting. The first step involved 

extracting features from each audio file. In this 
study, Mel-Frequency Cepstral Coefficients 
(MFCCs) were extracted which capture the 
spectral features required for speech analysis. In 
this process, each audio file is initially 
segmented into frames. Afterwards, the power 
spectrum of each frame is represented by 
calculating its coefficients. In our study, we 
calculated the 13 coefficients, which are 
sufficient to represent each audio segment. 
After the feature extraction, we performed data 
balancing which was required to achieve 
uniformity in data dimensions. To achieve the 
constant frame size of 300, extracted MFCCs 
were truncated to maximum length or padded 
with zeros. This step was necessary because 
each audio file had different lengths, thereby 
facilitating seamless integration into the training 
pipeline. The reason is to select 300 frames for 
the extraction of Mel-Frequency Cepstral 
Coefficients (MFCCs) to ensure an adequate 
representation of the audio signal while 
maintaining computational efficiency. Each 
frame typically spans 20-25 milliseconds, which 
allows us to capture important temporal 
variations in the acoustic features of the signal. 
The choice of 300 frames corresponds to a 
segment of approximately 7.5 seconds, which is 
long enough to encompass meaningful speech 
or audio patterns while remaining within a 
practical processing window. This duration 
provides sufficient information for downstream 
analysis, such as speech recognition or 
classification tasks, without introducing 
unnecessary computational complexity. 
Additionally, the fixed number of frames 
ensures consistency in feature representation, 
allowing for easier comparison across different 
samples and facilitating the training of machine 
learning models. Thus, 300 frames offer a 
balanced trade-off between the need for rich 
temporal features and the desire for 
manageable input data for model training. After 
performing the dataset balancing, next we 
structure the data into arrays. The arrays were 
composed of MFCC features and binary labels 0 
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and 1 (0 for absence and 1 for presence of 
dysphonia). These labels indicated the presence 
and absence of dysphonia, or we can say normal 
and abnormal speech. This labelling is done to 
satisfy the requirement of the deep learning 
models which are designed to perform binary 
classification tasks.  To check the performance 
of the model, the dataset is divided into training 
and test sets. The 80:20 stratified technique is 
used, with 80 per cent dedicated to training sets 
and 20 per cent data reserved for testing 
purposes. 
3. Model Architecture 

We have proposed three model architectures 
representing the variants of RNN. The 
architecture details of each model and 
experimental settings are described below in 
this section. Experimental Settings and 
Environment All three model architectures were 
evaluated under the following experimental 
settings: 
Hardware:   
● Processor:   Dell core i7 3m4 GHz 6700 cpu  
● RAM:  8 GB memory  
Software:  
● TensorFlow 2.0 with the Keras API: 
TensorFlow 2.0, with the integrated Keras API, 
provides an intuitive and efficient framework for 
implementing and training machine learning 
models, particularly deep learning models.  
● Librosa: Librosa is a Python library for audio 
and music analysis. It provides tools for 
performing tasks such as loading audio files, 
extracting features like Mel spectrograms, and 
performing transformations on audio signals. In 
the context of speech and audio processing, 
Librosa is often used for preprocessing and 
feature extraction, such as generating Mel-
Frequency Cepstral Coefficients (MFCCs) from 
raw audio data. 
● Numpy: Numpy is a core Python library for 
numerical computing, providing support for 
large, multi-dimensional arrays and matrices, 
along with a wide range of mathematical 
functions to manipulate these arrays. 

● Matplotlib: Matplotlib is a widely used Python 
library for data visualization. It allows for the 
creation of static, interactive, and animated 
plots. In the context of machine learning and 
audio analysis, Matplotlib is often used to 
visualize training results, such as plotting loss 
curves, accuracy trends, and spectrograms, 
providing a clear visual representation of model 
performance and data characteristics. 
Architecture Details 
To achieve uniformity in the experiments, we 
designed the model with similar architectural 
components. Further, the models were 
designed with minimal layers to reduce model 
complexity. All three models namely: Simple 
RNN, Gated Recurrent Unit (GRU), and Long 
Short Term Memory (LSTM) models were 
configured with one model layer, one hidden 
layer and output layer. The purpose of these 
minimal layer models was to check how they 
perform without introducing any complexity.  In 
the RNN model, the first Simple RNN layer with 
128 units, a dense hidden layer with 64 units, 
and an output layer representing binary 
classification was used. In this study, we utilized 
a Recurrent Neural Network (RNN) with a 
configuration of 128 units in the first hidden 
layer and 64 units in the second hidden layer for 
speech recognition tasks on the 
UncommonVoice dataset. The UncommonVoice 
dataset, known for its diverse set of non-native 
speech data, presents unique challenges such as 
varying accents, noise, and speech patterns. The 
choice of 128 units in the first hidden layer 
allows the model to capture the complex 
temporal dependencies inherent in speech, 
particularly useful for dealing with the dataset’s 
varied phonetic structures and non-native 
speech characteristics. The 64 units in the 
second hidden layer serve to refine these 
learned representations, reducing model 
complexity and enhancing generalization by 
preventing overfitting specific speaker 
characteristics. This configuration offers a 
balanced approach that ensures both sufficient 
capacity for accurate feature extraction and 
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efficient model training, critical for handling the 
diverse and challenging nature of the 
UncommonVoice dataset. In total, simple RNN 
has 26,562 trainable parameters. The GRU 
model featured a GRU layer with 128 units, 
followed by a dense hidden layer with 64 units, 
and an output layer for binary classification, 
resulting in 63,298 trainable parameters. The 
third model LSTM also used an LSTM layer with 
128 units, a dense hidden layer and an output 
layer having 81,090 parameters. Initially, the 
epoch size was kept at 50 for all three models 
despite this setting, the training of the RNN 
stopped at 40 epochs, while the LSTM and GRU 
models halted at 24 epochs as shown in the 
training loss and validation loss graphs of each 
model.  A batch size of 32 was selected because 
it speeds up the training process and results in 
memory efficiency. The Adam optimizer, 
evaluated with categorical cross entropy, was 
used as the loss function. To introduce non-
linearity in the model and understand the 
complex patterns of shorter and longer 
sequences ReLU activation function was utilized, 
respectively.  All models were introduced with 
L2 regularization with a parameter of 0.01 to 
prevent overfitting. Additionally, early stopping 
with a patience of 5 epochs was employed 
during training to halt the training process if 
validation loss did not improve, thereby 
preventing overfitting and ensuring the best-
performing model parameters were retained. 
These standardized settings made it suitable to 
compare and identify the best model for the 
task of dysphonia classification. Table 1 
summarizes the information regarding model 
architecture.  
4. Performance Evaluation 
  To evaluate the performance of different 
variants of RNN in the task of dysphonia 
classification, we used multiple performance 
metrics. The first metric used is accuracy, which 
is the indicator of overall model prediction 
correctness. It measures the proportion of 
correctly classified instances out of the total 
predicted instances of the model. Precision was 

used to check the model’s ability to correctly 
identify positive instances of dysphonia, 
excluding false positive instances. Recall on the 
other hand checks the model's capability that 
how many positive cases were identified by the 
model within the dataset. The F1 score, which is 
the combination of both precision and recall, 
provides a balanced evaluation of the model by 
identifying positive and negative dysphonia 
cases. Using these metrics in this study helps us 
to rigorously assess the performance of GRU, 
Simple RNN, and LSTM models, indicating their 
strengths and limitations in dysphonia 
classification. 
Results and Discussion 

This study attempted to evaluate the 
performance of 3 RNN variants. Those variants 
were Simple RNN, LSTM, and GRU, the analysis 
targeted the undertaking of dysphonia 
classification in the dataset named 
“UncommonVoice”.  
Table 1: Model Architecture 

 
Fig. 2: Training and validation loss of each model 

 
Table 2: Results 

   
An accuracy of 77% was achieved by the Simple 

Model Architecture Parameters 

GRU 
 
RNN  
 
LSTM 

GRU layer (128 units) → Dense hidden layer 
(64 units) → Output layer for binary 
classification. 
Simple RNN layer (128 units) → Dense 
hidden layer (64 units) → Output layer. 

 
LSTM layer (128 units) → Dense hidden 
layer (64 units) → Output layer. 

63,298 
  

26,562 
  

81,090 

 

 Model Accuracy F1 Score Precision Recall 

RNN 77% 0.5949 0.7713 0.6717 

LSTM 94% 0.9396 0.9425 0.9390 

GRU 93% 0.9390 0.9391 0.9372 
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RNN variant. Its Precision and Recall were found 
to be 77.13% and 67.17% respectively. 
Moreover, the F1 Score was calculated as 59.4. 
Although the Simple RNN has a straightforward 
architecture, it achieved moderate performance 
as compared to other models in this task. This 
outcome can be attributed to the architecture’s 
lower complexity, having few parameters and 
simpler computations. Despite its easy 
implementation and faster training time, RNNs 
suffer from the vanishing gradient problem due 
to which the model could not capture long-term 
dependencies in this specific speech disorder. 
The LSTM model demonstrated significantly 
higher performance with an accuracy of 0.94, 
indicating that 94% of the model’s predictions 
were accurate. The precision value was 0.9408 
and the recall was 0.9390, indicating that the 
LSTM correctly identified dysphonia instances 
with high precision and sensitivity. The F1 score 
of 0.94075 further confirms the model’s 
balanced performance, reflecting its ability to 
maintain high precision while effectively 
capturing all positive instances in the dataset. 
The LSTM’s ability to capture long-term 
dependencies in sequential data proved 
advantageous in accurately identifying instances 
of dysphonia, showcasing its effectiveness in 
this classification task. However, as shown by 
the complexity of the architecture (more 
parameters), LSTM is known for its high 
computational cost, longer training times, and 
increased memory requirements. Similarly, the 
GRU model achieved an accuracy of 0.93, 
demonstrating its strong performance in 
dysphonia classification. Precision was 0.9390, 
indicating that when the model predicted 
dysphonia, it was correct 93.90% of the time. 
The 93.91% (almost 94%) recall value highlights 
the GRU model's strong capability to identify a 
significant proportion of positive instances in 
the dataset. With an F1 score of 0.9372, the GRU 
effectively balances precision and recall, 
offering a well-rounded evaluation of its 
performance. Its efficiency in training and 
adeptness at handling sequential data further 

bolstered its competitive performance, rivalling 
the LSTM. These findings emphasize the 
superior accuracy and robustness of LSTM and 
GRU models compared to the Simple RNN in 
classifying dysphonia using voice recordings. 
The superior accuracy and robustness of LSTM 
and GRU models highlight their suitability for 
tasks demanding precise classification of voice 
disorders. LSTM’s ability to capture and retain 
long-term dependencies in sequential data, 
combined with the GRU's training efficiency and 
effective handling of sequential information, 
underpin their exceptional performance in this 
domain. Future studies could focus on 
advancing model architecture or refining 
feature engineering techniques to enhance 
classification accuracy and improve 
generalization across diverse datasets and 
conditions. 
Conclusion  
 This study examined three types of recurrent 
neural networks (RNNs)—Simple RNN, LSTM, 
and GRU—for classifying dysphonia using the 
"UncommonVoice" dataset. The findings 
revealed that LSTM and GRU significantly 
outperformed Simple RNN in all evaluation 
metrics, including accuracy, precision, recall, 
and F1 score. Simple RNNs struggle with 
learning long-term dependencies. This 
limitation makes it challenging for Simple RNNs 
to capture temporal relationships in sequential 
data like speech. The LSTM model achieved 93% 
accuracy, while the GRU performed slightly 
better with 94% accuracy. These scores seem 
sufficient for this domain, as they demonstrate 
a significant ability to differentiate between 
normal and disordered speech, especially given 
the challenges associated with variability in 
voice data. However, while these results are 
promising, it is important to note that the real-
world applicability depends on additional 
factors, such as generalizability across different 
datasets, robustness to noise, and integration 
with clinical workflows. This highlights the need 
to choose neural network architectures that are 
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well-suited to the challenges of sequential data, 
ensuring dependable and practical results. 
Recommendations 
  Future research could focus on unravelling the 
internal mechanisms of GRU variants to better 
understand their performance in dysphonia 
classification. One area of interest is the 
examination of activation sequences, such as: 
1. Candidate → Reset → Update → Forget → 
Activation → Output 
2. Candidate → Update → Forget → Activation → 
Reset → Output → Activation 

 Analyzing these sequences may provide insights 
into how specific gate configurations impact the 
learning process and classification accuracy. 
Comparative studies on GRU models with 
modified gate arrangements or alternative 
activation functions could further optimize 
these architectures, making them more efficient 
and effective for voice disorder detection. 
Additionally, the research scope can be 
expanded to apply these models to diverse 
datasets that cover a variety of voice disorders 
like the Saarbruecken voice Database, or UA 
speech dataset that covers dysarthria. This 
would help to assess the generalization 
capabilities of these models. Moreover, 
developing methods to improve cross-condition 
and cross-population performance could 
enhance the reliability and applicability of 
dysphonia classification systems. These 
advancements could lead to the development of 
optimized RNN architectures specifically 
designed for voice disorder detection, paving 
the way for improved clinical and practical 
applications. 
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